6 research outputs found

    EC-Earth3-AerChem: A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6

    Get PDF
    This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average -0.09 W m-2 with a standard deviation due to interannual variability of 0.25 W m-2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∼ C with an interannual standard deviation of 0.17 ∼ C, exhibiting a small drift of 0.015 ± 0.005 ∼ C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∼ C, and its transient climate response is estimated at 2.1 ∼ C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995-2014 has an average bias of -0.86 ± 0.05 ∼ C with a standard deviation across ensemble members of 0.35 ∼ C in the Northern Hemisphere and 1.29 ± 0.02 ∼ C with a corresponding standard deviation of 0.05 ∼ C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091-2100) of 4.9 ∼ C above the preindustrial mean. A 0.5 ∼ C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∼ C

    HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR - Description, model computational performance and basic validation

    Get PDF
    A new global high-resolution coupled climate model, EC-Earth3P-HR has been developed by the EC-Earth consortium, with a resolution of approximately 40 km for the atmosphere and 0.25° for the ocean, alongside with a standard-resolution version of the model, EC-Earth3P (80 km atmosphere, 1.0 ° ocean). The model forcing and simulations follow the High Resolution Model Intercomparison Project (HighResMIP) protocol. According to this protocol, all simulations are made with both high and standard resolutions. The model has been optimized with respect to scalability, performance, data storage and post-processing. In accordance with the HighResMIP protocol, no specific tuning for the high-resolution version has been applied. Increasing horizontal resolution does not result in a general reduction of biases and overall improvement of the variability, and deteriorating impacts can be detected for specific regions and phenomena such as some Euro-Atlantic weather regimes, whereas others such as the El Niño-Southern Oscillation show a clear improvement in their spatial structure. The omission of specific tuning might be responsible for this. The shortness of the spin-up, as prescribed by the HighResMIP protocol, prevented the model from reaching equilibrium. The trend in the control and historical simulations, however, appeared to be similar, resulting in a warming trend, obtained by subtracting the control from the historical simulation, close to the observational one

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    Summary

    No full text
    We present the software library MG which provides an interface for the parallel implementation of adaptive flow solvers using unstructured grids. The excellent scalability on distributed memory architectures is demonstrated. Current applications include finite element solvers for incompressible as well as compressible flows. As an example we present large eddy simulations of the turbulent channel flow at ¦¨§�©������� � and the flow past a square cylinder at ¦�§������������� � using an SUPG FEM for the compressible Navier-Stokes equations.

    The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1

    Get PDF
    The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</p

    Die neuere Entwicklung der Farbenphotographie

    No full text
    corecore